These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Temperature dependence of dynamics of hydrated myoglobin. Comparison of force field calculations with neutron scattering data. Author: Loncharich RJ, Brooks BR. Journal: J Mol Biol; 1990 Oct 05; 215(3):439-55. PubMed ID: 2231714. Abstract: Molecular dynamics is used to probe the atomic motions of the carboxy-myoglobin protein as a function of temperature. Simulations of 150 picoseconds in length are carried out on the protein at 20, 60, 100, 180, 220, 240, 260, 280, 300, 320 and 340 K. The simulations attempt to mimic neutron scattering experiments very closely by including a partial hydration shell around the protein. Theoretical elastic, quasielastic and inelastic neutron scattering data are derived from the trajectories and directly compared with experiment. Compared to experiment, the simulation-derived elastic scattering curves show a decrease in intensity as a function of the scattering wavevector, q2. The inelastic and quasielastic spectra show that the inelastic peak is shifted to lower frequency than the experimental value, while quasielastic behavior is in good agreement with experiment. This suggests that the theoretical model is too flexible in the harmonic limit (low temperature), but accurately reproduces high-temperature behavior. Time correlation functions of the intermediate scattering function are determined. At low temperature there is one fast decay process, and at high temperatures there is an additional slow relaxation process that is due to quasielastic scattering. The average atomic fluctuations show that the protein behaves harmonically at low temperatures. At approximately 210 K, a glass-like transition in atomic fluctuations is seen. Above the transition temperature, the atomic fluctuations exhibit both harmonic and anharmonic behavior. Comparison of protein mobility behavior with experiment indicate the fluctuations derived from simulations are larger in the harmonic region. However, the anharmonic region agrees very well with experiment. The anharmonicity is large at all temperatures, with a gradual monotonic increase from 0.5 at 20 K to greater than 0.7 at 340 K without a noticeable change at the glass transition temperature. Heavy-atom dihedral transitions are monitored as a function of temperature. Trends in the type of dihedral transitions that occur with temperature are clearly visible. Dihedral transitions involving backbone atoms occur only above the glass transition temperature. The overall protein behavior results suggest that at low temperatures there is purely vibrational motion with one fast decay process, and above the glass transition temperature there is more anharmonic motion with a fast and a slower relaxation process occurring simultaneously.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]