These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mutants of pheV in Escherichia coli affecting control by attenuation of the pheS, T and pheA operons. Two distinct mechanisms for de-attenuation. Author: Pages D, Buckingham RH. Journal: J Mol Biol; 1990 Nov 05; 216(1):17-24. PubMed ID: 2231729. Abstract: Two mutants of pheV, a gene coding for tRNA(Phe) in Escherichia coli, were previously isolated because they affect attenuator control of the pheS, T operon when the mutant pheV genes are carried by the plasmid pBR322. We show that the two mutants (A44 and A46) affect attenuator control by different mechanisms. The effect of mutant A44 on pheS, T expression can be progressively decreased by overproduction of Phe-tRNA synthetase, consistent with the mutant tRNA acting as a competitive inhibitor of the enzyme. By contrast, the effect on attenuation of mutant A46 increases with overproduction of Phe-tRNA synthetase, indicating that the mutant must be charged to affect attenuation; we propose that this mutant affects translation directly and causes derepression by competing with wild-type tRNA in translation of the attenuator region leader peptide. Mutant A46 but not mutant A44 leads to further de-attenuation in a miaA background. The presence of two different mechanisms for de-attenuation is further indicated by the finding that a second attenuator controlled by Phe codon translation, from the pheA operon, is affected quite differently by the mutant tRNAs. Finally, experiments involving the introduction of the mutations A44 and A46 into an amber suppressor derived from tRNA(Phe) suggest that both species can function in protein synthesis but with reduced efficiency; mutant A46 is less efficient than mutant A44, consistent with a defect in elongation.[Abstract] [Full Text] [Related] [New Search]