These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: E Platinum, a newly synthesized platinum compound, induces autophagy via inhibiting phosphorylation of mTOR in gastric carcinoma BGC-823 cells.
    Author: Hu C, Zou MJ, Zhao L, Lu N, Sun YJ, Gou SH, Xi T, Guo QL.
    Journal: Toxicol Lett; 2012 Apr 05; 210(1):78-86. PubMed ID: 22322152.
    Abstract:
    A tightly regulated catabolic process named autophagy involves the degradation of intracellular components via lysosomes. Here we investigate the antitumor effect of E Platinum, a newly synthesized derivative of oxaliplatin, in vivo and in vitro. E Platinum exhibits growth inhibition of various tumor cells in a dose-dependent manner, but the mechanism underlying it is unclear. Based on theory introducing autophagy, we preliminarily investigate whether autophagy could contribute to the antitumor activity of E Platinum. Our results showed that autophagy induced by 12.5 μM E Platinum in gastric carcinoma BGC-823 cells was significantly characterized by the FITC-fluorescent microtubule associated protein 1 light chain 3 (MAP-LC3), lysosomal-rich/acidic compartments visualized with Lysotracker red (LTR-red) and an accumulation of numerous large autophagic vesicles within the cytoplasm, but not in the control cells. Meanwhile treatment of cells with 12.5 μM E Platinum resulted in conversion of water soluble LC3 (LC3-I) to lipidated and autophagosome-associated form (LC3-II) as well as increasing expression of autophagy protein Beclin 1. Activation of predominant lysosomal aspartic protease, LAMP-1 and cathepsin D, was demonstrated. Moreover, RNA interference targeting Beclin 1, inhibition of autophagy by 3-methyladenine (3-MA) and chloroquine significantly suppressed the above process as well as the BGC-823 cells growth inhibition triggered by 12.5 μM E Platinum. Studies of mechanism revealed that E Platinum suppressed activation of mTOR and p70S6K by decreasing phosphorylation of Akt, ERK1/2, JNK and p38 involved in mitogen-activated protein kinase signaling. We supported new evidences for E Platinum as a promising antitumor agent, involving with autophagy induction.
    [Abstract] [Full Text] [Related] [New Search]