These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Indoxyl sulfate upregulates renal expression of MCP-1 via production of ROS and activation of NF-κB, p53, ERK, and JNK in proximal tubular cells.
    Author: Shimizu H, Bolati D, Higashiyama Y, Nishijima F, Shimizu K, Niwa T.
    Journal: Life Sci; 2012 Apr 09; 90(13-14):525-30. PubMed ID: 22326498.
    Abstract:
    AIMS: Monocyte chemotactic protein-1 (MCP-1) plays an important role in recruiting monocytes/macrophages to injured tubulointerstitial tissue. The present study examined whether indoxyl sulfate, a uremic toxin, regulates renal expression of MCP-1. MAIN METHODS: The effect of indoxyl sulfate on the expression of MCP-1 was determined using human proximal tubular cells (HK-2 cells) and following animals: (1) Dahl salt-resistant normotensive rats (DN), (2) Dahl salt-resistant normotensive indoxyl sulfate-administered rats (DN+IS), (3) Dahl salt-sensitive hypertensive rats (DH), and (4) Dahl salt-sensitive hypertensive indoxyl sulfate-administered rats (DH+IS). KEY FINDINGS: DN+IS, DH, and DH+IS rats showed significantly increased mRNA expression of MCP-1 in the kidneys compared with DN rats. DH+IS rats tended to show increased mRNA expression of MCP-1 in the kidneys compared with DH rats. Immunohistochemistry demonstrated the stimulatory effects of indoxyl sulfate on MCP-1 expression and monocyte/macrophage infiltration in the kidneys. Indoxyl sulfate upregulated mRNA and protein expression of MCP-1 in HK-2 cells. Indoxyl sulfate induced activation of ERK, p38, and JNK as well as of NF-κB and p53 in HK-2 cells. An antioxidant, and inhibitors of NF-κB, p53, ERK pathway (MEK1/2), and JNK suppressed indoxyl sulfate-induced mRNA expression of MCP-1 in HK-2 cells. SIGNIFICANCE: Indoxyl sulfate upregulates renal expression of MCP-1 through production of reactive oxygen species (ROS), and activation of NF-κB, p53, ERK, and JNK in proximal tubular cells. Thus, accumulation of indoxyl sulfate in chronic kidney disease might be involved in the pathogenesis of tubulointerstitial injury through induction of MCP-1 in the kidneys.
    [Abstract] [Full Text] [Related] [New Search]