These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nonlinear dimensionality reduction and mapping of compound libraries for drug discovery. Author: Reutlinger M, Schneider G. Journal: J Mol Graph Model; 2012 Apr; 34():108-17. PubMed ID: 22326864. Abstract: Visualization of 'chemical space' and compound distributions has received much attraction by medicinal chemists as it may help to intuitively comprehend pharmaceutically relevant molecular features. It has been realized that for meaningful feature extraction from complex multivariate chemical data, such as compound libraries represented by many molecular descriptors, nonlinear projection techniques are required. Recent advances in machine-learning and artificial intelligence have resulted in a transfer of such methods to chemistry. We provide an overview of prominent visualization methods based on nonlinear dimensionality reduction, and highlight applications in drug discovery. Emphasis is on neural network techniques, kernel methods and stochastic embedding approaches, which have been successfully used for ligand-based virtual screening, SAR landscape analysis, combinatorial library design, and screening compound selection.[Abstract] [Full Text] [Related] [New Search]