These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mammalian erythroblast enucleation requires PI3K-dependent cell polarization. Author: Wang J, Ramirez T, Ji P, Jayapal SR, Lodish HF, Murata-Hori M. Journal: J Cell Sci; 2012 Jan 15; 125(Pt 2):340-9. PubMed ID: 22331356. Abstract: Enucleation, the final step in terminal differentiation of mammalian red blood cells, is an essential process in which the nucleus surrounded by the plasma membrane is budded off from the erythroblast to form a reticulocyte. Most molecular events in enucleation remain unclear. Here we show that enucleation requires establishment of cell polarization that is regulated by the microtubule-dependent local activation of phosphoinositide 3-kinase (PI3K). When the nucleus becomes displaced to one side of the cell, actin becomes restricted to the other side, where dynamic cytoplasmic contractions generate pressure that pushes the viscoelastic nucleus through a narrow constriction in the cell surface, forming a bud. The PI3K products PtdIns(3,4)P₂ and PtdIns(3,4,5)P₃ are highly localized at the cytoplasmic side of the plasma membrane. PI3K inhibition caused impaired cell polarization, leading to a severe delay in enucleation. Depolymerization of microtubules reduced PI3K activity, resulting in impaired cell polarization and enucleation. We propose that enucleation is regulated by microtubules and PI3K signaling in a manner mechanistically similar to directed cell locomotion.[Abstract] [Full Text] [Related] [New Search]