These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel device for measuring respirable dustiness using low-mass powder samples. Author: O'Shaughnessy PT, Kang M, Ellickson D. Journal: J Occup Environ Hyg; 2012; 9(3):129-39. PubMed ID: 22335240. Abstract: Respirable dustiness represents the tendency of a powder to generate respirable airborne dust during handling and therefore indicates the propensity for a powder to become an inhalation hazard. The dustiness of 14 powders, including 10 different nanopowders, was evaluated with the use of a novel low-mass dustiness tester designed to minimize the use of the test powder. The aerosol created from 15-mg powder samples falling down a tube were measured with an aerodynamic particle sizer (APS). Particle counts integrated throughout the pulse of aerosol created by the falling powder were used to calculate a respirable dustiness mass fraction (D, mg/kg). An amorphous silicon dioxide nanopowder produced a respirable D of 121.4 mg/kg, which was significantly higher than all other powders (p < 0.001). Many nanopowders produced D values that were not significantly different from large-particle powders, such as Arizona Road Dust and bentonite clay. In general, fibrous nanopowders and powders with primary particles >100 nm are not as dusty as those containing granular, nano-sized primary particles. The method used here, incorporating an APS, represents a deviation from a standard method but resulted in dustiness values comparable to other standard methods.[Abstract] [Full Text] [Related] [New Search]