These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dynamics of Salmonella small RNA expression in non-growing bacteria located inside eukaryotic cells. Author: Ortega AD, Gonzalo-Asensio J, García-del Portillo F. Journal: RNA Biol; 2012 Apr; 9(4):469-88. PubMed ID: 22336761. Abstract: Small non-coding regulatory RNAs (sRNAs) have been studied in many bacterial pathogens during infection. However, few studies have focused on how intracellular pathogens modulate sRNA expression inside eukaryotic cells. Here, we monitored expression of all known sRNAs of Salmonella enterica serovar Typhimurium (S. Typhimurium) in bacteria located inside fibroblasts, a host cell type in which this pathogen restrains growth. sRNA sequences known in S. Typhimurium and Escherichia coli were searched in the genome of S. Typhimurium virulent strain SL1344, the subject of this study. Expression of 84 distinct sRNAs was compared in extra- and intracellular bacteria. Non-proliferating intracellular bacteria upregulated six sRNAs, including IsrA, IsrG, IstR-2, RyhB-1, RyhB-2 and RseX while repressed the expression of the sRNAs DsrA, GlmZ, IsrH-1, IsrI, SraL, SroC, SsrS(6S) and RydC. Interestingly, IsrH-1 was previously reported as an sRNA induced by S. Typhimurium inside macrophages. Kinetic analyses unraveled changing expression patterns for some sRNAs along the infection. InvR and T44 expression dropped after an initial induction phase while IstR-2 was induced exclusively at late infection times (> 6 h). Studies focused on the Salmonella-specific sRNA RyhB-2 revealed that intracellular bacteria use this sRNA to regulate negatively YeaQ, a cis-encoded protein of unknown function. RyhB-2, together with RyhB-1, contributes to attenuate intracellular bacterial growth. To our knowledge, these data represent the first comprehensive study of S. Typhimurium sRNA expression in intracellular bacteria and provide the first insights into sRNAs that may direct pathogen adaptation to a non-proliferative state inside the host cell.[Abstract] [Full Text] [Related] [New Search]