These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High-frequency cortical subdural stimulation enhanced plasticity in surgery of a tumor in Broca's area. Author: Barcia JA, Sanz A, Balugo P, Alonso-Lera P, Brin JR, Yus M, Gonzalez-Hidalgo M, Acedo VM, Oliviero A. Journal: Neuroreport; 2012 Mar 28; 23(5):304-9. PubMed ID: 22336871. Abstract: Functional areas located near or within brain gliomas prevent the complete resection of these tumors. It has recently been described that slow tumor invasion promotes neural reorganization, and even topographic plasticity, allowing a staged resection of those tumors. Thus, our aim was to promote plasticity by mimicking the tumor's capability to displace brain function. This proceeded through the production of a 'virtual lesion' in eloquent areas within a tumor using continuous high-frequency cortical electrical stimulation (cHFCS). An anaplastic astrocytoma located in Broca's area progressed in a patient whose lateralization of language to the side of the lesion was demonstrated with functional MRI. After partial tumor resection using awake cortical monitoring, we implanted a subdural grid over the eloquent cortex located within residual tumor. We then applied cHFCS for 25 days, using a frequency of 130 Hz and a pulse width of 1 ms. Stimulus intensity was set to the threshold wherein mild speech disturbance was evident without any other neurological effects. This treatment successfully achieved the displacement of speech functions, and a more radical resection of the tumor was possible in a second surgery. Critically, a reorganization of motor language areas was demonstrated both with functional MRI and cortical stimulation. Furthermore, motor language areas were also identified in the right hemisphere, where previously they were absent. The patient's speech fluency improved both after stimulation and resection. We therefore demonstrate the first evidence of induced topographic plasticity using cHFCS in eloquent areas within a tumor, which allowed for increased tumor removal. Our results open the possibility to induce plasticity before the resection of brain tumors near eloquent areas, in order to increase the extent of resection.[Abstract] [Full Text] [Related] [New Search]