These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Thermal mobility of β-O-4-type artificial lignin. Author: Uraki Y, Sugiyama Y, Koda K, Kubo S, Kishimoto T, Kadla JF. Journal: Biomacromolecules; 2012 Mar 12; 13(3):867-72. PubMed ID: 22339317. Abstract: Several lignin model polymers and their derivatives comprised exclusively of β-O-4 or 8-O-4' interunitary linkages were synthesized to better understand the relation between the thermal mobility of lignin, in particular, thermal fusibility and its chemical structure; an area of critical importance with respect to the biorefining of woody biomass and the future forest products industry. The phenylethane (C6-C2)-type lignin model (polymer 1) exhibited thermal fusibility, transforming into the rubbery/liquid phase upon exposure to increasing temperature, whereas the phenylpropane (C6-C3)-type model (polymer 2) did not, forming a char at higher temperature. However, modifying the Cγ or 9-carbon in polymer 2 to the corresponding ethyl ester or acetate derivative imparted thermal fusibility into this previously infusible polymer. FT-IR analyses confirmed differences in hydrogen bonding between the two model lignins. Both polymers had weak intramolecular hydrogen bonds, but polymer 2 exhibited stronger intermolecular hydrogen bonding involving the Cγ-hydroxyl group. This intermolecular interaction is responsible for suppressing the thermal mobility of the C6-C3-type model, resulting in the observed infusibility and charring at high temperatures. In fact, the Cγ-hydroxyl group and the corresponding intermolecular hydrogen bonding interactions likely play a dominant role in the infusibility of most native lignins.[Abstract] [Full Text] [Related] [New Search]