These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Site-specific advantages in skeletal geometry and strength at the proximal femur and forearm in young female gymnasts. Author: Dowthwaite JN, Rosenbaum PF, Scerpella TA. Journal: Bone; 2012 May; 50(5):1173-83. PubMed ID: 22342799. Abstract: PURPOSE: We evaluated site-specific skeletal adaptation to loading during growth, comparing radius (RAD) and femoral neck (FN) DXA scans in young female gymnasts (GYM) and non-gymnasts (NON). METHODS: Subjects from an ongoing longitudinal study (8-26yr old) underwent annual DXA scans (proximal femur, forearm, total body) and anthropometry, completing maturity and physical activity questionnaires. This cross-sectional analysis used the most recent data meeting the following criteria: gynecological age ≤2.5yr post-menarche; and GYM annual mean gymnastic exposure ≥5.0h/wk in the prior year. Bone geometric and strength indices were derived from scans for 173 subjects (8-17yr old) via hip structural analysis (femoral narrow neck, NN) and similar radius formulae (1/3 and Ultradistal (UD)). Maturity was coded as M1 (Tanner I breast), M2 (pre-menarche, ≥Tanner II breast) or M3 (post-menarche). ANOVA and chi square compared descriptive data. Two factor ANCOVA adjusted for age, height, total body non-bone lean mass and percent body fat; significance was tested for main effects and interactions between gymnastic exposure and maturity. RESULTS: At the distal radius, GYM means were significantly greater than NON means for all variables (p<0.05). At the proximal femur, GYM exhibited narrower periosteal and endosteal dimensions, but greater indices of cortical thickness, BMC, aBMD and section modulus, with lower buckling ratio (p<0.05). However, significant interactions between maturity and loading were detected for the following: 1) FN bone mineral content (BMC) and NN buckling ratio (GYM BMC advantages only in M1 and M3; for BMC and buckling ratio, M1 advantages were greatest); 2) 1/3 radius BMC, width, endosteal diameter, cortical cross-sectional area, and section modulus (GYM advantages primarily post-menarche); and 3) UD radius BMC and axial compressive strength (GYM advantages were larger with greater maturity, greatest post-menarche). CONCLUSIONS: Maturity-specific comparisons suggested site-specific skeletal adaptation to loading during growth, with greater advantages at the radius versus the proximal femur. At the radius, GYM advantages included greater bone width, cortical cross-sectional area and cortical thickness; in contrast, at the femoral neck, GYM bone tissue cross-sectional area and cortical thickness were greater, but bone width was narrower than in NON. Future longitudinal analyses will evaluate putative maturity-specific differences.[Abstract] [Full Text] [Related] [New Search]