These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-frequency electrical stimulation of cardiac cells and application to artifact reduction.
    Author: Dura B, Chen MQ, Inan OT, Kovacs GT, Giovangrandi L.
    Journal: IEEE Trans Biomed Eng; 2012 May; 59(5):1381-90. PubMed ID: 22345525.
    Abstract:
    A novel modality for the electrical stimulation of cardiac cells is described. The technique is based on HF stimulation-burst of HF (1-25 kHz) biphasic square waves-to depolarize the cells and trigger action potentials (APs). HF stimulation was demonstrated in HL-1 cardiomyocyte cultures using microelectrode arrays, and the underlying mechanisms were investigated using single-cell model simulations. Current thresholds for HF stimulation increased at higher frequencies or shorter burst durations, and were typically higher than thresholds for single biphasic pulses. Nonetheless, owing to the decreasing impedance of metal electrodes with increasing frequencies, HF bursts resulted in reduced electrode voltages (up to four fold). Such lowered potentials might be beneficial in reducing the probability of irreversible electrochemical reactions and tissue damage, especially for long-term stimulation. More significantly, stimulation at frequencies higher than the upper limit of the AP power spectrum allows effective artifact reduction by low-pass filtering. Shaping of the burst envelope provides further reduction of the remaining artifact. This ability to decouple extracellular stimulation and recording in the frequency domain allowed detection of APs during stimulation-something previously not achievable to the best of our knowledge.
    [Abstract] [Full Text] [Related] [New Search]