These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: photooxidation of the primary electron donor. Author: Zabelin AA, Shkuropatova VA, Shuvalov VA, Shkuropatov AY. Journal: Biochemistry (Mosc); 2012 Feb; 77(2):157-64. PubMed ID: 22348475. Abstract: Photochemical oxidation of the primary electron donor P in reaction centers (RCs) of the filamentous anoxygenic phototrophic bacterium Chloroflexus (C.) aurantiacus was examined by light-induced Fourier transform infrared (FTIR) difference spectroscopy at 95 K in the spectral range of 4000-1200 cm(-1). The light-induced P(+)Q(A)(-)/PQ(A) IR spectrum of C. aurantiacus RCs is compared to the well-characterized FTIR difference spectrum of P photooxidation in the purple bacterium Rhodobacter (R.) sphaeroides R-26 RCs. The presence in the P(+)Q(A)(-)/PQ(A) FTIR spectrum of C. aurantiacus RCs of specific low-energy electronic transitions at ~2650 and ~2200 cm(-1), as well as of associated vibrational (phase-phonon) bands at 1567, 1481, and 1294-1285 cm(-1), indicates that the radical cation P(+) in these RCs has dimeric structure, with the positive charge distributed between the two coupled bacteriochlorophyll a molecules. The intensity of the P(+) absorbance band at ~1250 nm (upon chemical oxidation of P at room temperature) in C. aurantiacus RCs is approximately 1.5 times lower than that in R. sphaeroides R-26 RCs. This fact, together with the decreased intensity of the absorbance band at ~2650 cm(-1), is interpreted in terms of the weaker coupling of bacteriochlorophylls in the P(+) dimer in C. aurantiacus compared to R. sphaeroides R-26. In accordance with the previous (pre)resonance Raman data, FTIR measurements in the carbonyl stretching region show that in C. aurantiacus RCs (i) the 13(1)-keto C=O groups of P(A) and P(B-) molecules constituting the P dimer are not involved in hydrogen bonding in either neutral or photooxidized state of P and (ii) the 3(1)-acetyl C=O group of P(B) forms a hydrogen bond (probably with tyrosine M187) absorbing at 1635 cm(-1). Differential signals at 1757(+)/1749(-) and 1741(+)/1733(-) cm(-1) in the FTIR spectrum of C. aurantiacus RCs are attributed to the 13(3)-ester C=O groups of P in different environments.[Abstract] [Full Text] [Related] [New Search]