These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanistic investigation of the iridium-catalysed alkylation of amines with alcohols. Author: Fristrup P, Tursky M, Madsen R. Journal: Org Biomol Chem; 2012 Apr 07; 10(13):2569-77. PubMed ID: 22349189. Abstract: The [Cp*IrCl(2)](2)-catalysed alkylation of amines with alcohols was investigated using a combination of experimental and theoretical methods. A Hammett study involving a series of para-substituted benzyl alcohols resulted in a line with a negative slope. This clearly documents that a positive charge is built up in the transition state, which in combination with the measurement of a significant kinetic isotope effect determines hydride abstraction as being the selectivity-determining step under these conditions. A complementary Hammett study using para-substituted anilines was also carried out. Again, a line with a negative slope was obtained suggesting that nucleophilic attack on the aldehyde is selectivity-determining. A computational investigation of the entire catalytic cycle with full-sized ligands and substrates was performed using density functional theory. The results suggest a catalytic cycle where the intermediate aldehyde stays coordinated to the iridium catalyst and reacts with the amine to give a hemiaminal which is also bound to the catalyst. Dehydration to the imine and reduction to the product amine also takes place without breaking the coordination to the catalyst. The fact that the entire catalytic cycle takes place with all the intermediates bound to the catalyst is important for the further development of this synthetic transformation.[Abstract] [Full Text] [Related] [New Search]