These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: δ(34)S values in recent sea sediments and their significance using several sediment profiles from the western Baltic Sea. Author: Hartmann M, Nielsen H. Journal: Isotopes Environ Health Stud; 2012; 48(1):7-32. PubMed ID: 22352384. Abstract: The isotope ratios of various sulphur components (total sulphur content in the sediment, sulphate and H(2)S in the pore-water) were measured in a number of cores from recent marine sediments taken from the Kieler Bucht (Kiel Bay) region in the western Baltic Sea. Additionally, the quantitative contents of total sulphur, sulphate, sulphide, chloride, organic carbon, iron and water in the sediment and in the pore-water solutions, respectively, were determined. These investigations provided the following results: 1. The sulphur contained in the sediment (∼ 0.3-2% of the dry sample) was for the most part introduced only after sedimentation. This confirms the deliberations of Kaplan et al. [The Distribution and Isotopic Abundance of Sulfur in Recent Marine Sediments off Southern California, Geochim. Cosmochim. Acta 27, 297 (1963)]. The organic substance contributes to the sulphur content of the sediment only to an insignificant degree (in our samples with ∼5-10% of the total sulphur). 2. The sulphate in the pore-waters has been identified as a source for sulphur in the sediment. During normal sedimentation, the exchange of sulphate by diffusion significant for changes in the sulphur content goes down to a sediment depth of 4-6 cm. In this process, the sulphate consumed by reduction and formation of sulphide or pyrite is mostly replaced. The uppermost sediment layer thus represents a partially open system for the total sulphur. The diagenesis of the sulphur is allochemical. At depths below 4-6 cm, we are dealing with a closed system. The further diagenesis of sulphur here is isochemical. 3. The isotope values of the sediment sulphur are influenced primarily by sulphur which comes into the sediment by diffusion and which is bound by subsequent bacteriological reduction as either sulphide or pyrite. As a consequence of the prevailing reduction of (32)S and reverse-diffusion of sulphate into the open sea water, a (32)S enrichment takes place in the uppermost layer of the sediment. The δ(34)S values in the sediment range in general between-15 and-35‰, while seawater sulphate is+20‰. No relationship could be established between sedimentological or chemical changes and isotope ratios. In the cores, successive sandy and clayish layers showed no change in the δ(34)S values. However, the sedimentation rate seems to influence δ(34)S values. In one core with relatively low sedimentation rates, the δ(34)S values varied between-29 and-33‰, while cores with higher sedimentation rates showed values between-17 and-24‰. 4. As sediment depth increases, the pore-water sulphate shows, as expected, decreasing concentrations (in a depth of 30-40 cm, we found between 20 and 70% of the seawater values), and increasing δ(34)S values (in one case reaching more than+60‰). The concentration of sulphide in the pore-water increases, however, with sediment depth (to various extents, reaching 80 mg S per litre in one case). The δ(34)S values of the pore-water sulphide in all cores show increases paralleling the sulphate sulphur, with a nearly constant δ difference of 50-60‰ in all cores. This seems to confirm the genetic relationship between the two components.[Abstract] [Full Text] [Related] [New Search]