These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Composition of incubation solution impacts in vitro protein uptake to silicone hydrogel contact lenses.
    Author: Jadi S, Heynen M, Luensmann D, Jones L.
    Journal: Mol Vis; 2012; 18():337-47. PubMed ID: 22355245.
    Abstract:
    PURPOSE: To determine the impact of incubation solution composition on protein deposition to silicone hydrogel (SH) contact lenses using a simplistic and a complex model of the tear film. METHODS: Three SH materials--senofilcon A (SA), lotrafilcon B (LB), and balafilcon A (BA)--were incubated in two different solutions; Solution A was a simplistic augmented buffered saline solution containing a single protein, whereas Solution B was a complex artificial tear solution (ATS), containing the augmented buffered saline solution in addition to proteins, lipids, and mucins (pH=7.4). The proteins of interest (lysozyme, lactoferrin, albumin) were radiolabeled with Iodine-125 (2% protein of interest) and the accumulation of the conjugated protein to the lens materials was determined after 1, 7, 14, and 28 days of incubation. Protein deposition was measured using a gamma counter and the raw data were translated into absolute amounts (µg/lens) via extrapolation from standards. RESULTS: After 28 days, lysozyme uptake was significantly lower on BA lenses when incubated in Solution A (33.7 μg) compared to Solution B (56.2 μg), p<0.001. SA lenses deposited similar amounts of lysozyme when incubated in either Solution A (2.6 μg) or Solution B (4.1 μg), p>0.05. LB lenses also deposited similar amounts of lysozyme for both solutions (Solution A: 5.0 μg, Solution B: 4.7 μg, p>0.05). After 28 days, BA lenses accumulated approximately twice the amount of lactoferrin than the other lens materials, with 30.3 μg depositing when exposed to Solution A and 22.0 μg with Solution B. The difference between the two solutions was statistically significant (p<0.001). LB materials deposited significantly greater amounts of lactoferrin when incubated in Solution A (16.6 μg) compared to Solution B (10.3 μg), p<0.001. Similar amounts of lactoferrin were accumulated onto SA lenses regardless of incubation solution composition (Solution A: 8.2 μg, Solution B: 11.2 μg, p>0.05). After 28 days, albumin deposition onto BA lenses was significantly greater when lenses were incubated in Solution B (1.7 μg) compared to Solution A (0.9 μg), p<0.001. Similar amounts of albumin were deposited on SA lenses when incubated in either solution (0.6 μg versus 0.7 μg, p>0.05). LB lenses incubated in Solution A deposited more albumin compared to Solution B (0.9 μg versus 0.6 μg), p=0.003. DISCUSSION: Protein deposition onto SH materials varied when contact lenses were incubated in either a complex ATS compared to a single protein solution. More lysozyme accumulated onto BA lenses incubated in a complex analog of the human tear film, whereas lactoferrin deposited onto SA lenses independent of incubation solution composition. To better mimic the ex vivo environment, future studies should use more appropriate analogs of the tear film.
    [Abstract] [Full Text] [Related] [New Search]