These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cardiac-specific deletion of SOCS-3 prevents development of left ventricular remodeling after acute myocardial infarction.
    Author: Oba T, Yasukawa H, Hoshijima M, Sasaki K, Futamata N, Fukui D, Mawatari K, Nagata T, Kyogoku S, Ohshima H, Minami T, Nakamura K, Kang D, Yajima T, Knowlton KU, Imaizumi T.
    Journal: J Am Coll Cardiol; 2012 Feb 28; 59(9):838-52. PubMed ID: 22361405.
    Abstract:
    OBJECTIVES: The study investigated the role of myocardial suppressor of cytokine signaling-3 (SOCS3), an intrinsic negative feedback regulator of the janus kinase and signal transducer and activator of transcription (JAK-STAT) signaling pathway, in the development of left ventricular (LV) remodeling after acute myocardial infarction (AMI). BACKGROUND: LV remodeling after AMI results in poor cardiac performance leading to heart failure. Although it has been shown that JAK-STAT-activating cytokines prevent LV remodeling after AMI in animals, little is known about the role of SOCS3 in this process. METHODS: Cardiac-specific SOCS3 knockout mice (SOCS3-CKO) were generated and subjected to AMI induced by permanent ligation of the left anterior descending coronary artery. RESULTS: Although the initial infarct size after coronary occlusion measured by triphenyltetrazolium chloride staining was comparable between SOCS3-CKO and control mice, the infarct size 14 days after AMI was remarkably inhibited in SOCS3-CKO, indicating that progression of LV remodeling after AMI was prevented in SOCS3-CKO hearts. Prompt and marked up-regulations of multiple JAK-STAT-activating cytokines including leukemia inhibitory factor and granulocyte colony-stimulating factor (G-CSF) were observed within the heart following AMI. Cardiac-specific SOCS3 deletion enhanced multiple cardioprotective signaling pathways including STAT3, AKT, and extracellular signal-regulated kinase (ERK)-1/2, while inhibiting myocardial apoptosis and fibrosis as well as augmenting antioxidant expression. CONCLUSIONS: Enhanced activation of cardioprotective signaling pathways by inhibiting myocardial SOCS3 expression prevented LV remodeling after AMI. Our data suggest that myocardial SOCS3 may be a key molecule in the development of LV remodeling after AMI.
    [Abstract] [Full Text] [Related] [New Search]