These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electron-transfer processes in carboxy-cytochrome c oxidase after photodissociation of cytochrome a3 2+ . CO.
    Author: Boelens R, Wever R.
    Journal: Biochim Biophys Acta; 1979 Aug 14; 547(2):296-310. PubMed ID: 223638.
    Abstract:
    Under continuous illumination the CO binding curve of reduced carboxy-cytochrome c oxidase maintains the shape of the binding curve in the dark. The apparent dissociation constant calculated from the binding curves at various light intensities is a linear function of the light intensity. Marked differences are observed between the light-induced difference spectra of the fully reduced carboxy-cytochrome c oxidase and the mixed-valence carboxy-cytochrome c oxidase. These differences are enhanced in the presence of ferricyanide as an electron acceptor and are explained by partial oxidation of cytochrome a3 in the mixed-valence enzyme after photodissociation. Upon addition of CO to partially reduced formate cytochrome c oxidase (a2+a3 3+ . HCOOH) the cytochrome a3 2+. CO compound is formed completely with a concomitant oxidation of cytochrome a and the Cu associated with cytochrome a. During photodissociation of the CO compound the formate rebinds to cytochrome a3 and cytochrome a and its associated Cu are simultaneously reduced. These electron transfer processes are fully reversible since in the dark the a3 3+ . HCOOH compound is dissociated slowly with a concomitant formation of the a3 2+ . CO compound and oxidation of cytochrome a. When these experiments are carried out in the presence of cytochrome c, both cytochrome c and cytochrome a are reduced upon illumination of the mixed-valence carboxy-cytochrome c oxidase. In the dark both cytochrome c and cytochrome a are reoxidized when formate dissociates from cytochrome a3 and the a2+ 3 . CO compound is formed back. Thus, in this system we are able to reverse and to modulate the redox state of the different components of the final part of the respiratory chain by light.
    [Abstract] [Full Text] [Related] [New Search]