These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cholinergic modulation of responses to single tones produces tone-specific receptive field alterations in cat auditory cortex.
    Author: Metherate R, Weinberger NM.
    Journal: Synapse; 1990; 6(2):133-45. PubMed ID: 2237776.
    Abstract:
    Acetylcholine (ACh), acting via muscarinic receptors, is known to modulate neuronal responsiveness in primary sensory neocortex. The administration of ACh to cortical neurons facilitates or suppresses responses to sensory stimuli, and these effects can endure well beyond the period of ACh application. In the present study, we sought to determine whether ACh produces a general change in sensory information processing, or whether it can specifically alter the processing of sensory stimuli with which it was "paired". To answer this question, we restricted acoustic stimulation in the presence of ACh to a single frequency, and determined single neuron frequency receptive fields in primary auditory cortex before and after this pairing. During its administration, ACh produced mostly facilitatory effects on spontaneous activity and on responses to the single frequency tone. Examination of frequency receptive fields after ACh administration revealed receptive field modifications in 56% of the cells. In half of these cases, the receptive field alterations were highly specific to the frequency of the tone previously paired with ACh. Thus ACh can produce stimulus-specific modulation of auditory information processing. An additional and unexpected finding was that the type of modulation during ACh administration did not predict the type of receptive field modulation observed after ACh administration; this may be related to the physiological "context" of the same stimulus in two different conditions. The implications of these findings for learning-induced plasticity in the auditory cortex is discussed.
    [Abstract] [Full Text] [Related] [New Search]