These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Performance of dispersion-corrected density functional theory for the interactions in ionic liquids.
    Author: Grimme S, Hujo W, Kirchner B.
    Journal: Phys Chem Chem Phys; 2012 Apr 14; 14(14):4875-83. PubMed ID: 22378355.
    Abstract:
    Potential energy curves for the dissociation of cation-anion associates representing the building units of ionic liquids have been computed with dispersion corrected DFT methods. Non-local van der Waals density functionals (DFT-NL) for the first time as well as an atom pair-wise correction method (DFT-D3) have been tested. Reference data have been computed at the extrapolated MP2/CBS and estimated CCSD(T)/CBS levels of theory. The investigated systems are combined from two cations (1-butyl-3-methylimidazolium and tributyl(methyl)posphonium) and three anions (chloride, dicyanamide, acetate). We find substantial stabilization from London dispersion energy near equilibrium of 5-7 kcal mol(-1) (about 5-6% of the interaction energy). Equilibrium distances are shortened by 0.03-0.09 Å and fundamental (inter-fragment) vibrational frequencies (which are in the range 140-180 cm(-1)) are increased by typically 10 cm(-1) when dispersion corrections are made. The dispersion-corrected hybrid functional potentials are in general in excellent agreement with the corresponding CCSD(T) reference data (typical deviations of about 1-2%). The DFT-D3 method performs unexpectedly well presumably because of cancellation of errors between the dispersion coefficients of the cations and anions. Due to self-interaction error, semi-local density functionals exhibit severe SCF convergence problems, and provide artificial charge-transfer and inaccurate interaction energies for larger inter-fragment distances. Although these problems may be alleviated in condensed phase simulations by effective Coulomb screening, only dispersion-corrected hybrid functionals with larger amounts of Fock-exchange can in general be recommended for such ionic systems.
    [Abstract] [Full Text] [Related] [New Search]