These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Temporal pole proton preoperative magnetic resonance spectroscopy in patients undergoing surgery for mesial temporal sclerosis. Author: Fountas KN, Tsougos I, Gotsis ED, Giannakodimos S, Smith JR, Kapsalaki EZ. Journal: Neurosurg Focus; 2012 Mar; 32(3):E3. PubMed ID: 22380857. Abstract: OBJECT: The purpose of this prospective study was to compare the results of proton MR spectroscopy (MRS) in temporal poles in patients with unilateral mesial temporal sclerosis (MTS) with the histopathological findings of the resected temporal poles. METHODS: A total of 23 patients (14 male and 9 female) with a mean age of 25.2 years (range 17-45 years) were included in this study, which was conducted over a 4-year period. All patients suffered medically refractory epilepsy due to unilateral, MRI-proven MTS, with no other imaging abnormalities. All participants underwent preoperative single-voxel proton MRS using a 3-T MRI unit. The hippocampi and temporal poles were examined bilaterally. The concentrations of N-acetyl-aspartate (NAA), choline (Cho), and creatine (Cr) were measured, and the NAA/Cho, NAA/Cr, and NAA/Cho+Cr ratios were calculated. All patients underwent anterior temporal lobectomy and ipsilateral amygdalohippocampectomy, and surgical specimens from the temporal poles were sent for histopathological examination. Comparisons of the spectroscopic and histopathological results of the resected temporal poles were performed. The modified Engel classification system was used for evaluating seizure outcome in the cohort. RESULTS: The preoperative spectroscopic profiles of the sclerotic hippocampi were abnormal in all patients, and the contralateral hippocampus showed altered spectroscopic findings in 12 patients (52.2%). Spectroscopy of the temporal poles demonstrated severely decreased concentrations of NAA, markedly increased concentrations of Cho, and increased concentrations of Cr in the temporal pole ipsilateral to the MTS in 15 patients (65.2%). Similarly, the NAA/Cho, NAA/Cr, and NAA/Cho+Cr ratios were severely decreased in the temporal pole ipsilateral to the MTS in 16 patients (69.6%). Histopathological examination of the resected temporal poles demonstrated ischemic changes in 5 patients (21.7%), gliotic changes in 4 (17.4%), demyelinating changes in 3 (13.0%), and microdysplastic changes in 1 patient (4.3%). Comparisons of the spectroscopic and histopathological findings showed that the sensitivity of proton MRS was 100%, its specificity was 80%, its positive predictive value was 87%, and its negative predictive value was 100%. The mean follow-up time in this study was 3.4 years. At the end of the 2nd postoperative year, 17 patients (73.9%) were in Engel Class I, 5 (21.7%) were in Class II, and 1 (4.3%) was in Class III. CONCLUSIONS: Proton MRS detected altered ipsilateral temporal pole metabolism in patients with unilateral MTS. These metabolic changes were associated with permanent histological abnormalities of the temporal pole. This finding demonstrates that MTS may be a more diffuse histological process, and exact preoperative knowledge of its temporal extent becomes of paramount importance in the selection of the best surgical approach in these patients. Further validation of the observations is necessary for defining the role of temporal pole proton MRS in cases of temporal lobe epilepsy.[Abstract] [Full Text] [Related] [New Search]