These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Berberine suppresses the TPA-induced MMP-1 and MMP-9 expressions through the inhibition of PKC-α in breast cancer cells. Author: Kim S, Han J, Lee SK, Choi MY, Kim J, Lee J, Jung SP, Kim JS, Kim JH, Choe JH, Lee JE, Nam SJ. Journal: J Surg Res; 2012 Jul; 176(1):e21-9. PubMed ID: 22381172. Abstract: BACKGROUND: Berberine (BBR) is one of the major alkaloids, and it has been reported to have a variety of pharmacologic effects, including inhibition of cell cycle progression. Here, we investigated the effect of BBR on the MMP-1 and MMP-9 expressions, which are predictors of metastasis and invasion in breast cancer cells. METHODS: MMP-1 and MMP-9 mRNA expressions were analyzed by real-time PCR. The levels of MMP-1 protein and PKC-α phosphorylation were detected by Western blotting. MMP-9 protein expression was detected by gelatin zymography. Cell cycle was analyzed by FACS analysis. PKC-α knock-down was examined by PKC-α siRNA transfection. RESULTS: The basal levels of both the MMP-1 and MMP-9 mRNA expressions were decreased by BBR treatment in a dose-dependent manner. In contrast, TPA, which is a tumor promoter, significantly increased the levels of the MMP-1 and MMP-9 mRNA and protein expressions in the MCF-7 breast cancer cells. We also observed that the TPA-induced MMP-1 and MMP-9 mRNA and protein expressions were prevented by BBR treatment. In addition, the TPA-induced MMP-1 and MMP-9 expressions were completely decreased by Go6983 and PKC-α siRNA, respectively. TPA-induced PKC-α phosphorylation was dose-dependently decreased by BBR treatment. CONCLUSION: The TPA-induced PKC-α phosphorylation is suppressed and then the MMP-1 and MMP-9 expressions are also inhibited by berberine. Therefore, we suggest that berberine may be used as a candidate drug for the inhibition of metastasis of human breast cancer.[Abstract] [Full Text] [Related] [New Search]