These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization of synthetic hematite (α-Fe2O3) nanoparticles using a multi-technique approach. Author: Colombo C, Palumbo G, Ceglie A, Angelico R. Journal: J Colloid Interface Sci; 2012 May 15; 374(1):118-26. PubMed ID: 22381942. Abstract: The aim of this work was to investigate the surface structure of aqueous hematite dispersions characterized by a large variability of morphology and particle size combining structural investigations obtained from Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) techniques with in vitro particle size distributions and zeta potential measurements from Dynamic Light Scattering (DLS) technique, and we achieved a self-consistent and detailed characterization of hematite particles whose sizes and morphologies could be correlated to the synthesis conditions (type of added anion, Al substitution and pH). Surface AFM characterization provided an accurate analysis of particle microstructure and also indicated that the growth of microcrystals followed different surface roughness. DLS, AFM, and TEM techniques furnished complementary information on the average particle dimensions, whose variation could be attributed to the morphological difference of hematites, ranging from platy to regular or irregular hexagonal or ellipsoidal shape. Finally, a correlation between the average particle dimensions and the measured zeta potential was also been found in aqueous dilute suspensions characterized by neither pH nor-ionic-strength-control, for which a drop of zeta potential from positive to negative values was detected for hematite particle dimensions larger than a threshold size of ~150 nm.[Abstract] [Full Text] [Related] [New Search]