These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interfaces of ionic liquids and transition metal surfaces-adsorption, growth, and thermal reactions of ultrathin [C1C1Im][Tf2N] films on metallic and oxidised Ni(111) surfaces. Author: Cremer T, Wibmer L, Calderón SK, Deyko A, Maier F, Steinrück HP. Journal: Phys Chem Chem Phys; 2012 Apr 21; 14(15):5153-63. PubMed ID: 22382789. Abstract: Ultrathin films of the ionic liquid 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([C(1)C(1)Im][Tf(2)N]) were deposited on differently terminated Ni(111) single crystal surfaces. The initial wetting behaviour, the growth characteristics, the molecular arrangement at the interface, and thermal reactivity were investigated using angle-resolved X-ray photoelectron spectroscopy (ARXPS). On clean Ni(111), the initial growth occurs in a layer-by-layer mode. At submonolayer coverages up to at least 0.40 ML, a preferential arrangement of the IL ions in a bilayer structure, with the imidazolium cations in contact with the Ni surface atoms and the anions on top of the cation, is deduced. For higher coverages, a transition to a checkerboard-type arrangement occurs, which is most likely due to repulsive dipole-dipole interactions in the first layer. An overall preference for a checkerboard-type adsorption behaviour, i.e., anions and cations adsorbing next to each other, is found on the oxygen-precovered O(√3×√3)R30° Ni(111) surface. The thermal stability of adsorbed IL layers on Ni(111) and on a fully oxidised Ni(111) surface was studied by heating the layers to elevated temperatures. For clean Ni(111) reversible adsorption takes place. For the oxidised surface, however, only cation-related moieties desorb, starting at ~450 K, while anion-related signals remain on the surface up to much higher temperatures.[Abstract] [Full Text] [Related] [New Search]