These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Orthogonal least squares based complex-valued functional link network. Author: Amin MF, Savitha R, Amin MI, Murase K. Journal: Neural Netw; 2012 Aug; 32():257-66. PubMed ID: 22386786. Abstract: Functional link networks are single-layered neural networks that impose nonlinearity in the input layer using nonlinear functions of the original input variables. In this paper, we present a fully complex-valued functional link network (CFLN) with multivariate polynomials as the nonlinear functions. Unlike multilayer neural networks, the CFLN is free from local minima problem, and it offers very fast learning of parameters because of its linear structure. Polynomial based CFLN does not require an activation function which is a major concern in the complex-valued neural networks. However, it is important to select a smaller subset of polynomial terms (monomials) for faster and better performance since the number of all possible monomials may be quite large. Here, we use the orthogonal least squares (OLS) method in a constructive fashion (starting from lower degree to higher) for the selection of a parsimonious subset of monomials. It is argued here that computing CFLN in purely complex domain is advantageous than in double-dimensional real domain, in terms of number of connection parameters, faster design, and possibly generalization performance. Simulation results on a function approximation, wind prediction with real-world data, and a nonlinear channel equalization problem exhibit that the OLS based CFLN yields very simple structure having favorable performance.[Abstract] [Full Text] [Related] [New Search]