These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Application of PCA and SIMCA statistical analysis of FT-IR spectra for the classification and identification of different slag types with environmental origin. Author: Stumpe B, Engel T, Steinweg B, Marschner B. Journal: Environ Sci Technol; 2012 Apr 03; 46(7):3964-72. PubMed ID: 22390718. Abstract: In the past, different slag materials were often used for landscaping and construction purposes or simply dumped. Nowadays German environmental laws strictly control the use of slags, but there is still a remaining part of 35% which is uncontrolled dumped in landfills. Since some slags have high heavy metal contents and different slag types have typical chemical and physical properties that will influence the risk potential and other characteristics of the deposits, an identification of the slag types is needed. We developed a FT-IR-based statistical method to identify different slags classes. Slags samples were collected at different sites throughout various cities within the industrial Ruhr area. Then, spectra of 35 samples from four different slags classes, ladle furnace (LF), blast furnace (BF), oxygen furnace steel (OF), and zinc furnace slags (ZF), were determined in the mid-infrared region (4000-400 cm(-1)). The spectra data sets were subject to statistical classification methods for the separation of separate spectral data of different slag classes. Principal component analysis (PCA) models for each slag class were developed and further used for soft independent modeling of class analogy (SIMCA). Precise classification of slag samples into four different slag classes were achieved using two different SIMCA models stepwise. At first, SIMCA 1 was used for classification of ZF as well as OF slags over the total spectral range. If no correct classification was found, then the spectrum was analyzed with SIMCA 2 at reduced wavenumbers for the classification of LF as well as BF spectra. As a result, we provide a time- and cost-efficient method based on FT-IR spectroscopy for processing and identifying large numbers of environmental slag samples.[Abstract] [Full Text] [Related] [New Search]