These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NADPH oxidase-derived superoxide destabilizes lipopolysaccharide-induced interleukin 8 mRNA via p38, extracellular signal-regulated kinase mitogen-activated protein kinase, and the destabilizing factor tristetraprolin.
    Author: Al Ghouleh I, Magder S.
    Journal: Shock; 2012 Apr; 37(4):433-40. PubMed ID: 22392142.
    Abstract:
    Expression of inflammatory cytokines is regulated by transcriptional and posttranscriptional mechanisms. We previously showed that NADPH oxidase-derived superoxide induces inflammatory mediators in response to tumor necrosis factor α (TNF-α) and lipopolysaccharide (LPS). In this study, we examined the role of endothelial NADPH oxidase in the regulation of mRNA stability of three inflammatory mediators: interleukin (IL) 8, IL-6, and intercellular adhesion molecule 1 (ICAM-1). Tumor necrosis factor α increased mRNA stability of ICAM-1, IL-8, and IL-6 by a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism, but this did not involve NADPH oxidase. Surprisingly, whereas LPS treatment alone did not alter stability of these molecules, the antioxidant N-acetyl-L-cysteine; the flavine inhibitor diphenylene iodonium; short interfering RNA against Nox2, Nox4; and the p22(phox) subunit of NADPH oxidase all enhanced IL-8 mRNA stability in LPS-treated cells, indicating that LPS induced destabilization through NADPH oxidase. This occurred by a mechanism that involved extracellular signal-regulated kinase 1/2, p38 MAPK, and the mRNA-destabilizing factor tristetraprolin. On the other hand, N-acetyl-L-cysteine decreased mRNA stability of ICAM-1 and IL-6 in LPS-treated cells and IL-6 and ICAM-1 in TNF-α-treated cells. In conclusion, NADPH oxidase contributes to destabilization of IL-8 mRNA stability and propose a model for the complex underlying mechanism, which is dependent upon agonist (LPS vs. TNF-α) and target molecule (IL-8 vs. IL-6 and ICAM-1) and involves tristetraprolin, p38, and extracellular signal-regulated kinase 1/2 MAPK.
    [Abstract] [Full Text] [Related] [New Search]