These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Accumulation of magnetic iron oxide nanoparticles coated with variably sized polyethylene glycol in murine tumors. Author: Larsen EK, Nielsen T, Wittenborn T, Rydtoft LM, Lokanathan AR, Hansen L, Østergaard L, Kingshott P, Howard KA, Besenbacher F, Nielsen NC, Kjems J. Journal: Nanoscale; 2012 Apr 07; 4(7):2352-61. PubMed ID: 22395568. Abstract: Iron oxide nanoparticles have found widespread applications in different areas including cell separation, drug delivery and as contrast agents. Due to water insolubility and stability issues, nanoparticles utilized for biological applications require coatings such as the commonly employed polyethylene glycol (PEG). Despite its frequent use, the influence of PEG coatings on the physicochemical and biological properties of iron nanoparticles has hitherto not been studied in detail. To address this, we studied the effect of 333-20,000 Da PEG coatings that resulted in larger hydrodynamic size, lower surface charge, longer circulation half-life, and lower uptake in macrophage cells when the particles were coated with high molecular weight (M(w)) PEG molecules. By use of magnetic resonance imaging, we show coating-dependent in vivo uptake in murine tumors with an optimal coating M(w) of 10,000 Da.[Abstract] [Full Text] [Related] [New Search]