These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ratio of effective temperature to pressure controls the mobility of sheared hard spheres. Author: Haxton TK. Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011503. PubMed ID: 22400573. Abstract: Using molecular dynamics simulations, we calculate fluctuations and responses for steadily sheared hard spheres over a wide range of packing fractions φ and shear strain rates γ[over ̇], using two different methods to dissipate energy. To a good approximation, shear stress and density fluctuations are related to their associated response functions by a single effective temperature T(eff) that is equal to or larger than the kinetic temperature T(kin). We find a crossover in the relationship between the relaxation time τ and the the nondimensionalized effective temperature T(eff)/pσ(3), where p is the pressure and σ is the sphere diameter. In the solid response regime, the behavior at a fixed packing fraction satisfies τ ̇γ∝exp(-cpσ(3)/T(eff)), where c depends weakly on φ, suggesting that the average local yield strain is controlled by the effective temperature in a way that is consistent with shear transformation zone theory. In the fluid response regime, the relaxation time depends on T(eff)/pσ(3) as it depends on T(kin)/pσ(3) in equilibrium. This regime includes both near-equilibrium conditions where T(eff)≃T(kin) and far-from-equilibrium conditions where T(eff)≠T(kin). We discuss the implications of our results for systems with soft repulsive interactions.[Abstract] [Full Text] [Related] [New Search]