These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of serum 1,25-dihydroxyvitamin D3 in lactating rats.
    Author: Lobaugh B, Boass A, Lester GE, Toverud SU.
    Journal: Am J Physiol; 1990 Nov; 259(5 Pt 1):E665-71. PubMed ID: 2240205.
    Abstract:
    To characterize further the mechanism(s) underlying the increased serum 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] concentration associated with lactation in the rat, we examined hormone biosynthesis [i.e., renal 25-hydroxyvitamin D-1 alpha-hydroxylase (1 alpha-hydroxylase) activity] and hormone disappearance in groups of lactating Holtzman rats and age- and sex-matched nonlactating controls. 1 alpha-Hydroxylase activity was significantly greater in kidneys from lactating rats (4.0 +/- 0.42 fmol.mg-1.min-1) on a basal diet than in those from nonmated females (1.4 +/- 0.08 fmol.mg-1.min-1), an increment sufficient to account for the observed fourfold elevation of 1,25(OH)2D3 in the dams. The increase occurs despite the lower serum 1,25(OH)2D3 levels in lactating than in nonlactating rats at 12 and 24 h after a bolus injection of 1,25(OH)2D3 (2 ng/g body wt). Elevation of serum 1,25(OH)2D3 is not a requisite consequence of lactation, however, because dams receiving supplemental calcium from food (1.6%) and water (0.3%) exhibited no increase of either serum 1,25(OH)2D3 or 1 alpha-hydroxylase activity compared with controls. In contrast, lactating rats that received a diet with only 0.1% calcium had 5-fold higher serum 1,25(OH)2D3 levels and 20-fold higher 1 alpha-hydroxylase activity than nonlactating rats on the same diet. We conclude that other factors in conjunction with lactation, but not the lactating state per se, promote the changes in 1,25(OH)2D3 metabolism observed.
    [Abstract] [Full Text] [Related] [New Search]