These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel mechanism of capillary growth in the rat pulmonary microcirculation. Author: Burri PH, Tarek MR. Journal: Anat Rec; 1990 Sep; 228(1):35-45. PubMed ID: 2240600. Abstract: Postnatally, the rat lung parenchyma undergoes impressive growth. Within four months of birth, lung volume and alveolar and capillary surface areas increase over 20-fold and capillary volume 35-fold. Investigation of methacrylate casts of the pulmonary microvasculature revealed that, with age, lung capillaries were not only growing in surface and volume but also increasing their network density. We proposed that the capillary bed grows by formation of slender intravascular tissue pillars and termed this type of growth intussusceptive microvascular growth (Caduff et al., Anat. Rec., 216:154-164, 1986). The aim of this investigation was to detect the presence and to analyze the ultrastructure of slender tissue posts (diameter 1-2.5 microns) extending across the capillary lumina in serial electron microscopic sections of rat lung parenchyma (age 44 days). Computer-assisted three-dimensional reconstruction of the capillary lumen confirmed that tissue posts were matching the holes previously observed in casts. Post ultrastructure varied with size from a simple area of interendothelial contact to tissue pillars with a core of interstitial tissue. Based on the changing morphology of the pillars, a hypothesis for their development can be proposed: phase I, creation of a zone of contact between opposite capillary walls (formation of an interendothelial bridge); phase II, reorganization of the intercellular junctions of the endothelium, with central perforation of the capillary layer; phase III, formation of an interstitial post core, with successive invasion by cytoplasmic extensions of myofibroblasts, pericytes, and finally interstitial fibers; and phase IV, growth of the slender pillar to a normal full size capillary mesh. These findings support the new concept of intussusceptive growth of the lung capillary system.[Abstract] [Full Text] [Related] [New Search]