These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis of a novel CS-g-MMCs conjugate and the inhabitation on the proliferation of Tenon's capsule fibroblasts in vitro. Author: Duan L, Li X, Ouyang L, Quan D, Zheng Q, Ma J, Gao Q, Ge J. Journal: Eur J Pharm Sci; 2012 Aug 15; 46(5):357-66. PubMed ID: 22406092. Abstract: A novel anti-proliferative macromolecular conjugate, CS-g-MMCs, was synthesized in order to decrease the cytotoxicity of Mitomycin C (MMC) which was a traditional anti-proliferative agent of fibroblast in trabeculectomy. The structure of CS-g-MMCs was characterized by (1)H NMR, FT-IR spectroscopy and GPC analysis. The grafting degree (dg) of MMC onto chitosan (CS) was determined to be in the range of 2.8-11.3%, which could be controlled by variation of the molar ratios of MMC to oxidized chitosan (CS-CHO). In the drug release profiles of CS-g-MMCs in vitro, an initial burst followed by slow leakage was observed, and addition of acid or lysozyme obviously accelerated the MMC release. The MTS assay indicated that CS-CHO of 8 mg/ml has no cytotoxicity against human Tenon's capsule fibroblasts (HTCFs). The inhibition of HTCFs proliferation by CS-g-MMCs increased along with increasing the dg of conjugate. The CS-g-MMCs also caused the apoptosis of HTCFs and interfered in the active DNA synthesis in HTCFs. Furthermore, the expression of a-SMA at gene and protein levels were obviously lower when HTCFs were treated with CS-g-MMCs, as compared to MMC or blend of MMC/CS-CHO (p<0.05). Our results primarily demonstrated that the CS-g-MMCs conjugates have low cytotoxicity and have the effect to inhibit fibroblast proliferation.[Abstract] [Full Text] [Related] [New Search]