These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and structure elucidation of novel fused 1,2,4-triazine derivatives as potent inhibitors targeting CYP1A1 activity. Author: El Massry AM, Asal AM, Khattab SN, Haiba NS, Awney HA, Helmy M, Langer V, Amer A. Journal: Bioorg Med Chem; 2012 Apr 15; 20(8):2624-37. PubMed ID: 22414679. Abstract: Synthesis and structure elucidation of new series of novel fused 1,2,4-triazine derivatives 3a-3f, 4a-4i and 6a-6b and their inhibitory activities are presented. Molecular structures of the synthesized compounds were confirmed by (1)H NMR, (13)C NMR, MS spectra and elemental analyses. X-ray crystallographic analysis was performed on 2-acetyl-8-(N,N-diacetylamino)-6-(4-methoxybenzyl)-3-(4-methoxy-phenyl)-7-oxo-2,3-dihydro-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazine 3d and 2-acetyl-8-(N-acetylamino)-6-benzyl-3-(4-chlorophenyl)-3-methyl-7-oxo-2,3-dihydro-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazine 4e to secure their structures. The inhibitory effect of these compounds toward the CPY1A1 activity was screened to determine their potential as promising anticancer drugs. Our data showed that compounds 4e, 5a, 5b and 6b possess the highest inhibitory effects among all tested compounds. Furthermore, analysis of triazolotriazine derivatives docking showed that these compounds bind only at the interface of substrate recognition site 2 (SRS2) and (SRS6) at the outer surface of the protein. Amino-acids ASN214, SER216 and ILE462 participate in the binding of these compounds through H-bonds.[Abstract] [Full Text] [Related] [New Search]