These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prostaglandin E2 enhances cortical bone mass and activates intracortical bone remodeling in intact and ovariectomized female rats. Author: Jee WS, Mori S, Li XJ, Chan S. Journal: Bone; 1990; 11(4):253-66. PubMed ID: 2242291. Abstract: To assess the efficacy of prostaglandin E2 (PGE2) in augmenting cortical bone mass, graded doses of PGE2 were subcutaneously administered for 30 days to seven-month old sham-ovariectomized (SHAM) and ovariectomized (OVX) rats. Both groups were operated at three months of age. Histomorphometric analyses of double fluorescent labeled tibial shafts were performed on basal control, OVX, and SHAM rats treated with 0, 0.3, 1, 3, and 6 mg PGE2/kg/d for 30 days. Baseline aging data showed increased cortical tissue and cortical bone area and reduced bone formation parameters at the periosteal and endocortical bone envelopes between three and eight months of age. The tibial shafts of OVX rats compared to SHAM controls showed elevated periosteal mineral apposition rate and endocortical bone formation parameters. PGE2 administration to OVX and SHAM rats increased cortical bone by the addition of new circumferential bone on the endocortical and periosteal surfaces, as well as woven cancellous bone in the marrow region. Stimulated osteoblastic recruitment and activity enhanced bone formation at all bone surfaces. The new bone was both lamellar and woven in nature. PGE2 treatment also activated intracortical bone remodeling (not seen in untreated eight-month old rats), creating a porous cortex. Thus, PGE2 administration activated cortical bone modeling in the formation mode (A----F), as well as intracortical bone remodeling (A----R----F). PGE2 administration to OVX rats resulted in more intracortical bone remodeling, periosteal bone formation, and new cancellous bone production than observed in PGE2 treated controls. The findings that PGE2 administration to OVX and intact female rats increases cortical bone mass, coupled with observations that mouse, rat, dog, and man respond similarly to PGE2, suggest that PGE2 administration may be useful in the prevention and treatment of postmenopausal osteoporosis.[Abstract] [Full Text] [Related] [New Search]