These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Author: Hudson MB, Smuder AJ, Nelson WB, Bruells CS, Levine S, Powers SK. Journal: Crit Care Med; 2012 Apr; 40(4):1254-60. PubMed ID: 22425820. Abstract: OBJECTIVES: Previous workers have demonstrated that controlled mechanical ventilation results in diaphragm inactivity and elicits a rapid development of diaphragm weakness as a result of both contractile dysfunction and fiber atrophy. Limited data exist regarding the impact of pressure support ventilation, a commonly used mode of mechanical ventilation-that permits partial mechanical activity of the diaphragm-on diaphragm structure and function. We carried out the present study to test the hypothesis that high-level pressure support ventilation decreases the diaphragm pathology associated with CMV. METHODS: Sprague-Dawley rats were randomly assigned to one of the following five groups:1) control (no mechanical ventilation); 2) 12 hrs of controlled mechanical ventilation (12CMV); 3) 18 hrs of controlled mechanical ventilation (18CMV); 4) 12 hrs of pressure support ventilation (12PSV); or 5) 18 hrs of pressure support ventilation (18PSV). MEASUREMENTS AND MAIN RESULTS: We carried out the following measurements on diaphragm specimens: 4-hydroxynonenal-a marker of oxidative stress, active caspase-3 (casp-3), active calpain-1 (calp-1), fiber type cross-sectional area, and specific force (sp F). Compared with the control, both 12PSV and 18PSV promoted a significant decrement in diaphragmatic specific force production, but to a lesser degree than 12CMV and 18CMV. Furthermore, 12CMV, 18PSV, and 18CMV resulted in significant atrophy in all diaphragm fiber types as well as significant increases in a biomarker of oxidative stress (4-hydroxynonenal) and increased proteolytic activity (20S proteasome, calpain-1, and caspase-3). Furthermore, although no inspiratory effort occurs during controlled mechanical ventilation, it was observed that pressure support ventilation resulted in large decrement, approximately 96%, in inspiratory effort compared with spontaneously breathing animals. CONCLUSIONS: High levels of prolonged pressure support ventilation promote diaphragmatic atrophy and contractile dysfunction. Furthermore, similar to controlled mechanical ventilation, pressure support ventilation-induced diaphragmatic atrophy and weakness are associated with both diaphragmatic oxidative stress and protease activation.[Abstract] [Full Text] [Related] [New Search]