These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The VD1/RPD2 α1-neuropeptide is highly expressed in the brain of cephalopod mollusks. Author: Wollesen T, Nishiguchi MK, Seixas P, Degnan BM, Wanninger A. Journal: Cell Tissue Res; 2012 Jun; 348(3):439-52. PubMed ID: 22427117. Abstract: In certain gastropod mollusks, the central neurons VD(1) and RPD(2) express a distinct peptide, the so-called VD(1)/RPD(2) α1-neuropeptide. In order to test whether this peptide is also present in the complex cephalopod central nervous system (CNS), we investigated several octopod and squid species. In the adult decapod squid Idiosepius notoides the α1-neuropeptide is expressed throughout the CNS, with the exception of the vertical lobe and the superior and inferior frontal lobes, by very few immunoreactive elements. Immunoreactive cell somata are particularly abundant in brain lobes and associated organs unique to cephalopods such as the subvertical, optic, peduncle, and olfactory lobes. The posterior basal lobes house another large group of immunoreactive cell somata. In the decapod Idiosepius notoides, the α1-neuropeptide is first expressed in the olfactory organ, while in the octopod Octopus vulgaris it is first detected in the olfactory lobe. In prehatchlings of the sepiolid Euprymna scolopes as well as the squids Sepioteuthis australis and Loligo vulgaris, the α1-neuropeptide is expressed in the periesophageal and posterior subesophageal mass. Prehatchlings of L. vulgaris express the α1-neuropeptide in wide parts of the CNS, including the vertical lobe. α1-neuropeptide expression in the developing CNS does not appear to be evolutionarily conserved across various cephalopod taxa investigated. Strong expression in different brain lobes of the adult squid I. notoides and prehatching L. vulgaris suggests a putative role as a neurotransmitter or neuromodulator in these species; however, electrophysiological evidence is still missing.[Abstract] [Full Text] [Related] [New Search]