These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis of 2-furyl-4-arylidene-5(4H)-oxazolones as new potent antibacterial agents against phyto-pathogenic and nitrifying bacteria. Author: Thombare NS, Aggarwal N, Kumar R, Gopal M. Journal: J Environ Sci Health B; 2012; 47(4):326-35. PubMed ID: 22428894. Abstract: Crop losses due to bacterial pathogens are a major global concern. Most of the available pesticides for these pathogens suffer from various drawbacks such as complicated synthesis, high cost, high toxicity, pesticide resistance and environmental hazards. To overcome these drawbacks, the present study was undertaken to find a potent bactericide. Therefore, a series of compounds comprising bioactive furyl and oxazolone rings was synthesized under microwave irradiation and screened for in vitro antibacterial activity. The reactions were completed in fewer than 2 minutes with minimal use of solvents and resulted in high yields. These compounds were screened for antibacterial activity against plant pathogens, Xanthomonas oryzae, Ralstonia solanacearum and nitrifying bacteria, Nitrosomonas species under laboratory conditions. Five compounds were active as antibacterial agents against Xanthomonas oryzae and Ralstonia solanacearum. However, all compounds were effective against the Nitrosomonas species and the best one was 2-furyl-4-(3-methoxy-4-hydroxybenzylidene)-5(4H)-oxazolone. The study revealed the fast and environmentally friendly synthesis of bioactive title compounds, which also hold promise to be used as prototypes for the discovery of potent analogues.[Abstract] [Full Text] [Related] [New Search]