These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Critical role of microsomal prostaglandin E synthase-1 in the hydronephrosis caused by lactational exposure to dioxin in mice.
    Author: Yoshioka W, Aida-Yasuoka K, Fujisawa N, Kawaguchi T, Ohsako S, Hara S, Uematsu S, Akira S, Tohyama C.
    Journal: Toxicol Sci; 2012 Jun; 127(2):547-54. PubMed ID: 22430074.
    Abstract:
    Hydronephrosis induced in the kidney of neonatal mice exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via lactation is a sensitive and characteristic hallmark of TCDD teratogenicity. We previously found that cyclooxygenase-2 (COX-2) activity induced in mouse neonate kidneys by lactational TCDD exposure is required for this toxicity. COX-2 is an inducible form of cyclooxygenase and is responsible for producing prostaglandins (PGs) and thromboxane. PGE(2), a prostaglandin, is elevated in TCDD-exposed mouse pups. In this study, we investigated the role of microsomal prostaglandin E synthase-1 (mPGES-1), an inducible form of PGE(2) synthase, in TCDD-induced hydronephrosis. A dose of 10 μg TCDD/kg to dams increased mPGES-1 messenger RNA abundance, urinary PGE(2) levels, and the incidence of hydronephrosis in mPGES-1 wild-type pups. In homozygous mPGES-1 knockout (KO) mice, in contrast, TCDD-induced hydronephrosis was suppressed, demonstrating an essential role of mPGES-1 in the response. Lack of the mPGES-1 gene also suppressed urinary PGE(2) level to near the basal level in TCDD-exposed pups. In conclusion, mPGES-1 upregulation upon lactational TCDD exposure is a causal factor for TCDD-induced hydronephrosis in mouse neonates.
    [Abstract] [Full Text] [Related] [New Search]