These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Catalytic oxidation of benzene over nanostructured porous Co3O4-CeO2 composite catalysts.
    Author: Ma C, Mu Z, He C, Li P, Li J, Hao Z.
    Journal: J Environ Sci (China); 2011; 23(12):2078-86. PubMed ID: 22432341.
    Abstract:
    Mesostructured Co3O4-CeO2 composite was found to be an effective catalytic material for the complete oxidation of benzene. The Co3O4-CeO2 catalysts with different Co/Ce ratios (mol/mol) were prepared via the nanocasting method and the mesostructure was replicated from two-dimensional (2D) hexagonal SBA-15 and three-dimensional (3D) cubic KIT-6 silicas, respectively. All the obtained Co3O4-CeO2 catalysts exhibited the similar symmetry with the parent silicas and well ordered mesostructures. The Co3O4-CeO2 catalysts with 2D mesostructure showed lower catalytic activities than the corresponding 3D materials. The Co3O4-CeO2 catalyst nanocasted from KIT-6 and with the Co/Ce ratio of 16/1 possessed the best catalytic benzene oxidation activity due to larger quantities of surface hydroxyl groups and surface oxygenated species. The mesostructured Co3O4-CeO2 material thus shows great potential as a promising eco-environmental catalyst for benzene effective elimination.
    [Abstract] [Full Text] [Related] [New Search]