These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: nNOS downregulation attenuates neuronal apoptosis by inhibiting nNOS-GluR6 interaction and GluR6 nitrosylation in cerebral ischemic reperfusion.
    Author: Di JH, Li C, Yu HM, Zheng JN, Zhang GY.
    Journal: Biochem Biophys Res Commun; 2012 Apr 13; 420(3):594-9. PubMed ID: 22445759.
    Abstract:
    Glutamate receptor 6 (GluR6) is well documented to play a pivotal role in ischemic brain injury, which is mediated by the GluR6·PSD95·MLK3 signaling module and subsequent c-Jun N-terminal kinase (JNK) activation. Our recent studies show that GluR6 is S-nitrosylated in the early stages of ischemia-reperfusion. NO (Nitric Oxide) is mainly generated from neuronal nitric oxide synthase (nNOS) in cerebral neurons during the early stages of reperfusion. Here, the effect of nNOS downregulation on GluR6 S-nitrosylation and GluR6-mediated signaling was investigated in cerebral ischemia and reperfusion. Administration of nNOS oligonucleotides confirmed that GluR6 nitrosylation is induced by nNOS-derived endogenous NO and further activates the GluR6·PSD95·MLK3 signaling module and JNK signaling pathway. Moreover, this study revealed for the first time that nNOS can bind with GluR6 during ischemic reperfusion, and PSD95 is involved in this interaction. In summary, our results suggest that nNOS binds with GluR6 via PSD95 and then produces endogenous NO to S-nitrosylate GluR6 in cerebral ischemia-reperfusion, which provides a new approach for stroke therapy.
    [Abstract] [Full Text] [Related] [New Search]