These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Forms of selenium affect its transport, uptake and glutathione peroxidase activity in the Caco-2 cell model.
    Author: Wang Y, Fu L.
    Journal: Biol Trace Elem Res; 2012 Oct; 149(1):110-6. PubMed ID: 22451375.
    Abstract:
    The experiment was designed to investigate the effect of selenium (Se) chemical forms (sodium selenite, selenium nanoparticle [nano-Se] and selenomethionine) on the transport, uptake and glutathione peroxidase (GSH-Px) activity in the Caco-2 cell model. The transport and uptake of different forms of Se (0.1 μmol l(-1)) across the Caco-2 cell monolayer were carried out in two directions (apical [AP] to basolateral [BL] and BL to AP) for 2 h, respectively, and the apparent permeability coefficient (P(app)), transport efficiency and uptake efficiency were all calculated. In the present study, the transport and uptake of three forms of Se were time-dependent both in AP to BL and BL to AP directions. By the end of 2 h, the transport efficiencies of selenomethionine and nano-Se were higher than that of sodium selenite (P<0.05). The highest uptake efficiency (P<0.05) was observed in cells treated with nano-Se and significant difference (P<0.05) was also observed between the cells incubated with sodium selenite and selenomethionine. As for the P(app), sodium selenite (P<0.05) had the lowest values compared with that of selenomethionine and nano-Se, in both AP-BL and BL-AP. However, no significant differences were observed in GSH-Px activities. These results indicated that the efficiency of Se in the Caco-2 cells varied with its chemical forms, which might be associated with the differences in Se transport and uptake.
    [Abstract] [Full Text] [Related] [New Search]