These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [The mechanism of calcium control of smooth muscle tonic contraction].
    Author: Kosterin SA, Chervonenko IB, Burdyga FV.
    Journal: Biofizika; 1990; 35(4):665-9. PubMed ID: 2245234.
    Abstract:
    It has been shown in the experiments carried out on a fraction of inverted vesicles of myometrium sarcolemma that ATP-dependent Ca2+ transport system prevents dissipation of the calcium gradient directed from the intervesicular space outward with subsequent establishment of the stationary level of cation content inside the membrane vesicles (a blocker of electro-controlled calcium channels diltiasems was present in the incubation medium). Ortovanadatean inhibitor of the sarcolemma calcium pump suppressed Ca2+ stationary exchange in the vesicles fraction. The value of calcium stationary content in the vesicle membrane was regulated both by a change of the calcium pump activity (by varying Mg2+ concentration in the ATP-containing incubation medium), and by modification of calcium permeability of the vesicles (by varying concentration of ionophore A-23187 in this medium). In the presence of diltiasem and ortovanadate the Ca2+ basal current entering the myocytes from hyperpotassium washing solution activated the smooth muscle tonic contraction. In the absence of ortovanadate no contractile response was observed. On the basis of the evidence obtained a mechanism of calcium control of myometrium tonic contraction is proposed. According to this mechanism the Ca2+ current entering the unexcited myocytes under physiological conditions is efficiently compensated by the calcium pump of the sarcolemma. The inhibition of the latter (or an increase of the sarcolemma basal calcium permeability) provides further slow transition of the stationary value of Ca2+ concentration in the myoplasm to a new higher level and activation of the smooth muscle contraction accordingly.
    [Abstract] [Full Text] [Related] [New Search]