These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In silico discovery and virtual screening of multi-target inhibitors for proteins in Mycobacterium tuberculosis. Author: Speck-Planche A, Kleandrova VV, Luan F, Cordeiro MN. Journal: Comb Chem High Throughput Screen; 2012 Sep; 15(8):666-73. PubMed ID: 22452349. Abstract: Mycobacterium tuberculosis (MTB) is the principal pathogen which causes tuberculosis (TB), a disease that remains as one of the most alarming health problems worldwide. An active area for the search of new anti-TB therapies is concerned with the use of computational approaches based on Chemoinformatics and/or Bioinformatics toward the discovery of new and potent anti-TB agents. These approaches consider only small series of structurally related compounds and the studies are generally realized for only one target like a protein. This fact constitutes an important limitation. The present work is an effort to overcome this problem. We introduce here the first chemo-bioinformatic approach by developing a multi-target (mt) QSAR discriminant model, for the in silico design and virtual screening of anti-TB agents against six proteins in MTB. The mt-QSAR model was developed by employing a large and heterogeneous database of compounds and substructural descriptors. The model correctly classified more than 90% of active and inactive compounds in both, training and prediction series. Some fragments were extracted from the molecules and their contributions to anti-TB activity through inhibition of the six proteins, were calculated. Several fragments were identified as responsible for anti-TB activity and new molecular entities were designed from those fragments with positive contributions, being suggested as possible anti-TB agents.[Abstract] [Full Text] [Related] [New Search]