These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Continuous, in vivo pulmonary venous admixture from fiberoptically measured hemoglobin saturations. Author: Kamal GD, Starr JM, Symreng T. Journal: Crit Care Med; 1990 Dec; 18(12):1419-22. PubMed ID: 2245618. Abstract: In six anesthetized swine, pulmonary venous admixture (Qsp/Qt) was calculated by four methods: a) Qsp/Qt 1, fiberoptically measured arterial and mixed venous Hgb saturation (SaO2 and SvO2), PaO2 and PvO2 derived from saturations; b) Qsp/Qt 2, fiberoptically measured SaO2 and SvO2, PaO2 and PvO2 measured by blood gas analysis; c) Qsp/Qt 3, PaO2 and PvO2 measured by blood gas analysis, SaO2 and SvO2 derived from tensions; d) Qsp/Qt 4, SaO2 and SvO2 measured by bench oximetry, PaO2 and PvO2 derived from saturations. Input from the fiberoptic catheters was fed into a computer programmed to calculate Qsp/Qt 1 every 20 sec. Fifty-eight of these values were compared with simultaneously calculated Qsp/Qt 2, 3, and 4. There was no difference between fiberoptic and derived SaO2 or fiberoptic and cooximetric SvO2. Correlations and slopes for Qsp/Qt 1 with Qsp/Qt 2, 3, and 4 were significant (p less than .05). Comparing mean differences, Qsp/Qt 1 was significantly different only from Qsp/Qt 3 (p less than .01). We conclude that dual oximetry reliably tracks Qsp/Qt.[Abstract] [Full Text] [Related] [New Search]