These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evolution of inflammasome functions in vertebrates: Inflammasome and caspase-1 trigger fish macrophage cell death but are dispensable for the processing of IL-1β. Author: Angosto D, López-Castejón G, López-Muñoz A, Sepulcre MP, Arizcun M, Meseguer J, Mulero V. Journal: Innate Immun; 2012 Dec; 18(6):815-24. PubMed ID: 22456941. Abstract: Members of the nucleotide binding and oligomerization domain-like receptors (NLRs) and the PYD and CARD domain containing adaptor protein (PYCARD) assemble into multi-protein platforms, termed inflammasomes, to mediate in the activation of caspase-1 and the subsequent secretion of IL-1β and IL-18, and the induction of pyroptotic cell death. While the recognition site for caspase-1 is well conserved in mammals, most of the non-mammalian IL-1β genes cloned so far lack this conserved site. We report here that stimulation or infection of seabream macrophages (MØ) led to the caspase-1-independent processing and release of IL-1β. In addition, several classical activators of the NLRP3 inflammasome failed to activate caspase-1 and to induce the processing and release of IL-1β. Furthermore, the processing of IL-1β in seabream MØ is not prevented by caspase-1 or pan-caspase inhibitors, and recombinant seabream caspase-1 failed to process IL-1β. However, the pharmacological inhibition of caspase-1 impaired Salmonella enterica sv. Typhimurium-induced cell death. These results suggest a role for the inflammasome and caspase-1 in the regulation of pyroptotic cell death in fish and support the idea that its use as a molecular platform for the processing of pro-inflammatory cytokines arose after the divergence of fish and tetrapods.[Abstract] [Full Text] [Related] [New Search]