These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Solar regeneration of powdered activated carbon impregnated with visible-light responsive photocatalyst: factors affecting performances and predictive model. Author: Yap PS, Lim TT. Journal: Water Res; 2012 Jun 01; 46(9):3054-64. PubMed ID: 22464146. Abstract: This study demonstrated a green technique to regenerate spent powdered activated carbon (AC) using solar photocatalysis. The AC was impregnated with a photocatalyst photoexcitable under visible-light irradiation to yield a solar regenerable composite, namely nitrogen-doped titanium dioxide (N-TiO(2)/AC). This composite exhibited bifunctional adsorptive-photocatalytic characteristics. Contaminants of emerging environmental concern, i.e. bisphenol-A (BPA), sulfamethazine (SMZ) and clofibric acid (CFA) which exhibited varying affinities for AC were chosen as target pollutants. The adsorption of BPA and SMZ by the N-TiO(2)/AC was significantly higher than that of CFA. The performance of solar photocatalytic regeneration (SPR) of the spent N-TiO(2)/AC composite generally increased with light intensity, N-TiO(2) loading and temperature. The regeneration efficiency (RE) for CFA-loaded spent composite was the highest compared to the other pollutant-loaded spent composites, achieving 77% within 8h of solar irradiation (765 W m(-2)). The rate-limiting process was pollutant desorption from the interior AC sorption sites. A kinetic model was developed to predict the transient concentration of the sorbate remaining in the spent composite during SPR. Comparison studies using solvent extraction technique indicated a different order of RE for the three pollutants, attributable to their varying solubilities in the aqueous and organic solvents.[Abstract] [Full Text] [Related] [New Search]