These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Self nano-emulsifying simvastatin based tablets: design and in vitro/in vivo evaluation. Author: Abdelbary G, Amin M, Salah S. Journal: Pharm Dev Technol; 2013; 18(6):1294-304. PubMed ID: 22468935. Abstract: The aim of this work is to improve the oral bioavailability of poorly water soluble drug, simvastatin (SV) through combining the advantages of self-nanoemulsifying systems (SNEs) and tablets. Ternary phase diagram was constructed using Labrafil, Tween 80 and Transcutol, in order to evaluate self-nanoemulsification domain. The particle size distribution and zeta potential of the prepared systems were evaluated using Malvern Zetasizer. Liquisolid powders were prepared using Aeroperl(®) as a coating material and Avicel(®) or Starch 1500 as carrier materials, the powder flow properties were then evaluated. Compressed SV SNE based tablets were evaluated regarding their physical characteristics, in-vitro release properties as well as in-vivo pharmacokinetic evaluation in six healthy human volunteers using a validated LC/MS/MS method. The in-vitro release results revealed that the developed SNE based tablets improved the release of SV significantly, compared to commercially available SV tablets (Zocor(®)). The optimal SV SNE tablet formulation was S3St10 (10% Labrafil, 60% Tween 80, and 30% Transcutol). The in-vivo evaluation of S3St10 revealed that rapid and enhanced absorption of SV could be obtained from the SNE based tablet, with a 1.5 fold increase in bioavailability than that obtained after administration of Zocor(®). Hence such an approach could be promising in improving the bioavailability of SV.[Abstract] [Full Text] [Related] [New Search]