These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vitro and in vivo osteogenesis of human mesenchymal stem cells derived from skin, bone marrow and dental follicle tissues.
    Author: Park BW, Kang EJ, Byun JH, Son MG, Kim HJ, Hah YS, Kim TH, Mohana Kumar B, Ock SA, Rho GJ.
    Journal: Differentiation; 2012 Jun; 83(5):249-59. PubMed ID: 22469856.
    Abstract:
    The present study evaluated the human mesenchymal stem cells (hMSCs) isolated from skin (hSMSC), bone marrow (hBMSC) and dental follicle (hDFMSC) tissues on their in vitro and in vivo osteogenic potential using demineralized bone matrix (DBM) and fibrin glue scaffold. Cells originated from three distinct tissues showed positive expressions of CD44, CD73, CD90, CD105 and vimentin, and differentiation ability into osteocytes, adipocytes and chondrocytes. hMSCs from all tissues co-cultured with a mixed DBM and fibrin glue scaffold in non-osteogenic induction media were positively stained by von Kossa and expressed osteoblast-related genes, such as osteocalcin (OC), osteonectin (ON), runt-related transcription factor 2 (Runx2) and osterix. For in vivo osteogenic evaluation, PKH26 labeled hMSCs were implanted into the subcutaneous spaces of athymic mice with a mixed scaffold. At 4 weeks of implantation, PKH26 labeled cells were detected in all hMSC-implanted groups. Bone formation with OC expression and radio-opacity intensity were observed around DBM scaffold in all hMSC-implanted groups. Interestingly, hDFMSCs-implanted group showed the highest OC expression and calcium content. These findings demonstrated that hDFMSCs could be a potential alternative autologous cell source for bone tissue engineering.
    [Abstract] [Full Text] [Related] [New Search]