These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Activation of peroxisome proliferator-activated receptor-δ attenuates glutamate-induced neurotoxicity in HT22 mouse hippocampal cells.
    Author: Jin H, Ham SA, Kim MY, Woo IS, Kang ES, Hwang JS, Lee KW, Kim HJ, Roh GS, Lim DS, Kang D, Seo HG.
    Journal: J Neurosci Res; 2012 Aug; 90(8):1646-53. PubMed ID: 22473775.
    Abstract:
    Glutamate-induced neurotoxicity has been implicated in the pathogenesis of neurodegenerative disorders; however, little is known about the cellular events that underlie neurotoxicity or how to impede these events. This study demonstrates that peroxisome proliferator-activated receptor (PPAR)-δ regulates glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Activation of PPARδ by GW501516, a specific ligand, significantly inhibited glutamate-induced cell death and reactive oxygen species (ROS) production in HT22 cells. The siRNA-mediated knockdown of PPARδ abrogated the effects of GW501516 in neuronal toxicity and ROS production induced by glutamate. In addition, ligand-activated PPARδ reduced the glutamate-induced level of intracellular calcium ions (Ca(2+)) by modulating the influx of Ca(2+) from the extracellular space. Similarly, glutamate-induced cell death and intracellular Ca(2+) levels were attenuated in the presence of LY83583, an inhibitor of soluble guanylyl cyclase. Taken together, these results suggest that PPARδ plays an important role in glutamate-induced neurotoxicity by modulating oxidative stress and Ca(2+) influx.
    [Abstract] [Full Text] [Related] [New Search]