These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genetic analysis of essential cardiac transcription factors in 256 patients with non-syndromic congenital heart defects. Author: Kodo K, Nishizawa T, Furutani M, Arai S, Ishihara K, Oda M, Makino S, Fukuda K, Takahashi T, Matsuoka R, Nakanishi T, Yamagishi H. Journal: Circ J; 2012; 76(7):1703-11. PubMed ID: 22498567. Abstract: BACKGROUND: The genetic basis of most congenital heart defects (CHDs), especially non-syndromic and non-familial conditions, remains largely unknown. METHODS AND RESULTS: DNA samples were collected from immortalized cell lines and original genomes of 256 non-syndromic, non-familial patients with cardiac outflow tract (OFT) defects. Genes encoding NKX2.5, GATA4, GATA6, MEF2C, and ISL1, essential for heart development, were analyzed using PCR-based bidirectional sequencing. The transcriptional activity of proteins with identified sequence variations was analyzed using a luciferase assay. A novel sequence variant (A103V in MEF2C) was identified, in addition to 4 unreported non-synonymous sequence variants in 3 known causative genes (A6V in NKX2.5, T330R and S339R in GATA4, and E142K in GATA6) in 5 individuals. None of these was found in 500 controls without CHDs. In vitro functional assay showed that all proteins with identified sequence variations exhibited significant changes in transcriptional activity and/or synergistic activity with other transcription factors. Furthermore, overexpression of the A103V MEF2C variant in a fish system disturbed early cardiac development. CONCLUSIONS: New mutations in the transcription factors NKX2.5, GATA4, GATA6, and MEF2C that affect their protein function were identified in 2.3% (6/256) of patients with OFT defects. Our results provide the first demonstration of MEF2C mutation and suggest that disturbances in the regulatory circuits involving these cardiac transcription factors may cause a subset of non-syndromic and non-familial CHDs.[Abstract] [Full Text] [Related] [New Search]